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Periodic Table of the Elements
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The Elements According to Relative Abundance

A Periodic Chart by Prof. Wm_.F. Sheehan, University of Santa Clara, CA 95053
Ref. Chemistry,Vol.49,No.3, p 17-18,1976

Colors suggest
relative electro-
negativity
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gested by the positioning of neighbors. The chart emphasizes that in

Roughly, the size of an element’s own niche (*’I almost wrote square”) real life a chemist will probably meet O, Si, Al, . . . and that he better
is prqportlong:d to its abundance on Earth’s surface, and in addition, do something about it. Periodic tables based upon elemental abun-
certain chemical similarities (e.g., Be and Al, or B and Si) are sug- dance would, of course, vary from planet to planet. .. W.F.S.

NOTE: TO ACCOMMODATE ALL ELEMENTS SOME DISTORTIONS WERE NECESSARY, FOR EXAMPLE SOME ELEMENTS DO NOT OCCUR NATURALLY,
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The Liquid Drop Model

The Semi-Empirical Mass Formula

m(Z,N)y=[Z-my+N-m,|-B(Z, N)/C2 - B >0 neglecte binding
Original: Weizsacker, Z. Physik 86,431(1935)

2 )
z° A-27 .y bai
B(Z, N)=a,A-asA*® —a, 75~ 4 % _SAT?| =
INFINITE NUCLEAR MATTER 9 , -15 835 MeV Wapstra, Handb. Physik, XXXVIII
as =18.33 MeV +11.2MeV for o-—o0 nuclei
ac =0.714 MeV o = 0 MeV for odd - Anuclei
a. =23.20 MeV -11.2 MeV for e-e nuclei
., =23.

THE VALLEY OF STABILITY

Relative Contributions to Nuclear Mass
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Note:

In these
three,
neutrinos
are also
emitted

Decay Type Radiation Emitted Generic Equation Model
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proton number

Most Isotopes are Radioactive

Chart of the Nuclides 2009

nuclei total: 2974
in nature: 286
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Reversing the Trend --Nuclear Reactions
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ACCELERATORS

I T I T T I I 7
1,000,000 TeV' = | A “Livingston plot” showing the evolution of //-
accelerator laboratory energy from 1930 until y;
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1958-My first course in nuclear chemistry
Chart of the Nuclides 1958 114
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Synthesis of superheavy elements (cold and hot fusion)

6 10

GSI
Cold synthesis: Berkeley
“*Pp + *Ni, “Zn, ... —» 7110, 112, ...

Hot synthesis:
U, ... ,”°Cf + °Ca — 112, ... ,*'118

cold @ hot
synthesis of SHE

Ccross section
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Theoretical Limits to the Existence of
Nuclei

e Only a fraction of the
theoretically possible isotopes
have been produced and
studied.

A new generation of accelerators
being constructed will accelerate
radioactive ions and probe the
region of unknown isotopes
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Limits of Stability
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Time (Fm/c) = 1 32 MeV/nucleon 8Ca + 1245

b=11 ¢ 10 [ ¥ L
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[13] A.L. Keksis, thesis, Texas A&M University, 2007



200 GeV/nucleon
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The Big Bang

WAKE GIFS AT GIFSOLUP.COM




Historv of the Universe

Heavier Elements

First Atoms, H and He




TEMPERATURE (DEGREES KELVIN)
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“OUR SUN

10, 000 000 DEGREES



NEUTRINO ASTROPHYSICS
W. C. Haxton
Institute for Nuclear Theory and Department of Physics
Box 351550 University of Washington, Seattle, WA 98195
email: Haxton@phvs washington.edu

Figure 1: The Homestake Mine's chlorine datector, which Ray Davis Jr. and colleagues operated

for over three decades.

Figure 3: The left panel shows the Super-Kamiokande detector during filling, with scientists clean-
ing PMT surfaces as the water rises. The right panel is a fish-eve photo of the SNO detector and
cavity, showing the PMTs and support structure prior to cavity and detector filling.
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Origin of the Lighter Elements




Floor of Binding Energy Valley is Not Flat

Energetics of Transmutation
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Energetics of Transmutation

A massive star near the end of its lifetime has “onion ring” structure

Binding energy per nucleen (MeW)
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OnelmportangSoliceYodGenerationos
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(SIEXRLOSTONSIoRSUCHISTARS

VURE GULLAFYE SUPERNUYAE

DID 1987A EXPLODE IN 1987 ?

NO!
It was 9.87 x 1017 MILES Away ! The light
took 168, 000 years to reach us.




InTportant
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Nucleosynthesis in the r-process

JINA

Joint Institute for Nuclear Astrophysics 2002

Mowie

Calculation K. Vaughan, J.L. Galache,

and A. Aprahamian, University of Notre Dame

H. Schatz, National Superconducting Cyclotron Laboratory
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Mostly
protons

STARS
Giant Nuclei
And Sites of Nucleosynthesis

Large Changes in
Temperature, Density,
Proton/Neutron content

10" —{ 10

10°

Supernovae,
Binary Mergers

10°

Mostly
Neutrons



How does the physics of nuclei impact the physical universe?

» What is the origin of elements heavier than iron?
o How do stars burn and explode?
« What is the nucleonic structure of neutron stars?
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Nuclear Input
(experiment and Theory

/11 n Q

3
% q Masses and drip lines S S
§3 Nuclear reaction rates S
= Weak decay rates RS
82 Electron capture rates Supernova
eutrino interacti
Equation of State

Fission processes

protons

KS 1731-260


http://antwrp.gsfc.nasa.gov/apod/image/9709/tpyx_hst_big.jpg

« Relevance of heavy ion collisions to core
collapse supernovae

— Allow probing different densities in the lab

— Comparisons of heavy ion data to supernovae
calculations may help discriminate between
different models.

 Clusters appear in shock heated nuclear matter

— Clusters Role on the explosion dynamics and the
subsequent cooling and compression of the proto-
neutron star is not yet fully understood

— Valid treatment of the correlations and
clusterization in low density matter is a vital
ingredient of astrophysical models

« Equation of state (EQOS)

— Many fundamental connections between the
equation of state and neutrino interactions

— Crucial input for understanding proto-neutron star
evolution
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Time (Fm/c) = 1 32 MeV/nucleon 8Ca + 1245
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Velocity Plots

Light Charged Particles- Most Violent Collisions
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Crab Nebula, HST Image :
: : Supernova

Mass:"4.6+1.8 . (~9.2x103%g)

47 MeV/u Ar + 1121245p

Select the most violent
collisions

Identify the femtonova

— Intermediate velocity source

* nucleon-nucleon collisions early
in The reaction

— Observe light nuclei emitted

from from that source.
Temperature from relative
yields of particles

Density from Coalescense
analysis

Evolution time scale from
velocity of products from
intermediate velocity source

P Mass: 20-30 amu (~3.3x10726 kg)


http://en.wikipedia.org/wiki/Solar_mass
http://en.wikipedia.org/wiki/Solar_mass

CLUSTER FORMATION Astrophysical Implications, e.g.,

Modifies Nuclear EOS Core-collapse Supernovae
K.Sumiyoshi et al., .
e Astrophys.J. 629, 1o :—\ ]
! . \ 922 (2005) ..g 10" N stk position |
- "'..I Io,, o, . L E]L’J”‘— \l -
W i T T R Density. electron osE . :
Eumrm'se y : . 'qurkphasE* fraction, and E E
S L i . temperature profileofa =
s L f'* e ' 15 solar mass
— | gasof i‘mf‘ 3‘?‘)”""“‘3,”5-- o, supernova at 150 ms B RN AR
L U after core bounce --as =
£ 10c | function of the radius. =
& [
2t K.Sumiyoshi, G.
i Roepke
PRC 77, 055804
10’ (2008)
N cluster
density n[fm ] .
formation
Figure 1. Schematic view of the phase diagram of nuclear matter. The phase diagram Influences
is empirical accessible by heavy ion collisions, excited nucled, observation of nentron .
stars and the early universe as indicated in the diagram. New plans at GSI aim at neutrino
exploring the color supereonducting phase as well flux
INSTITUTE
S AL i . M.B tal.,
= — S. Typel, et al., ArXiv 0908.234 eyer et a

August 2009 Phys.Lett. B488, 247-253 (2000) (o



lemperatures and Densities
Are Correlated
» System starts hot
* As it cools, it expands
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Temperatures and Densities
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SN are “infinite", but HIC are finite

The "infinite” matter in SN is charge neutral,

but HIC has a net charge
Proton fraction, Y, can differ
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Composition of nuclear matter in calculations
— Different calculations include different

species

10

g™ 45" AT 38 40 360
Baryon density,nB[fm ]

Supernova Heavy Ion Nuclear
reaction
Density 1010<p< 2 2x10-3 < p < 3x102
(nuc/fm3)
Temperature | ~0<T<100 [5<T<«11
(MeV)
Electron 0<Y,<06 |VY,~041
fraction




From Wikipedia, the free encyclopedia

The equilibrium constant of a chemical reaction

ad+GB6... = pR+aoS5..

is the value of the reaction quotient when the reaction has reached equilibrium.

For a general chemical equilibriumthe thermodynamic equilibrium constant can be defined such that, at equilibrium,112

we _ ARY{S)..
{AY{B}"...

where curly brackets denote the thermodynamic activities** of the chemical species. The right-hand side of this equation corresponds to the

reaction quotient Q for arbitrary values of the activities. The reaction coefficient becomes the equilibrium constant as shown when the reaction
reaches equilibrium.

An equilibrium constant value is independent of the analytical concentrations of the reactant and product species in a mixture, but depends on
temperature and on ionic strength. Known equilibrium constant values can be used to determine the composition of a system at equilibrium.

The equilibrium constant is related to the standard Gibbs free energy change for the reaction.

AG® = —RTIn K*
If deviations from ideal behavior are neglected, the activities of solutes may be replaced by concentrations, [A], and the activity quotient becomes
a concentration quotient, K.

cz[ﬂﬂﬂfu
[A]*[B)”...

K. is defined in an equivalent way to the thermodynamic equilibrium constant but with concentrations of reactants and products instead of
activities. (K. appears here to have units of concentration raised to some power while K is dimensionless; however the concentration factors in K,
are properly divided by a standard concentration so that K, is dimensionless also.

Assuming ideal behavior, the activity of a solvent may be replaced by its mole fraction, ( approximately by 1 in dilute solution). The activity of a
pure liquid or solid phase is exactly 1. The activity of a species in an ideal gas phase may be replaced by its partial pressure.

**n , activity) is a measure of the “effective concentration” of a in a mixture. The species' depends on the activity Activity

depends on temperature, pressure and composition of the mixture, among other things. The difference between activity and other measures of composition arises because
in non-ideal or interact with each other, either to attract or to repel each other.
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Constraining supernova equations of state with equilibrium constants from heavy-ion
collisions

Matthias Hempel*
Department of Physics, University of Basel, Klingelbergstrasse 82, 1056 Basel, Switzerland

Joseph Natowitz, Kris Hagel, Stefan Typel, and Gerd Ropke
(Dated: January 29, 2015)

* M. Hempel et al., Phys. Rev. € 91, 045805
(2015).

« Dependence of Equilibrium constants on
various quantities

— Asymmeftry of system

— Coulomb effects

— Particle degrees of freedom

* Include comparison where possible to other
gar"ricle types observed in experiment (d, ¥,

He)
e Other EOS models



Equilibrium constants for a-particles

p(A,Z)

A—7
pZpit?

Many tests of EOS are done using mass
fractions and various calculations include
various different competing species.

If any relevant species are not included,
mass fractions are not accurate.

Equilibrium constants should be more
robust with respect to the choice of
competing species assumed in a particular
model if interactions are the same

Differences in the equilibrium constants
may offer the possibility to study the
intferactions

Models converge at lowest densities, but
are significantly below data

K.(A,Z) =

Ke(), fm®
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* Uncertainity in
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measurement
including at low
density

* Ideal gas Keq is
function of T only.
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Core-collapse supernovae (SN)
— Explosions of massive stars that radiate 99% of their energy in neutrinos
— Birth places of neutron stars

— Wide range of densities ranging from much lower than normal nuclear
density to much higher are sampled

Core Collapse Supernovae dynamics and the observed neutrino signals are
sensitive to the details of neutrino interactions with low density nuclear matter

at the Neutrinosphere
— Last scattering site of neutrinos in proto-neutron star: ~10!2 g/cm3 (~6x10-4
fm-3), T~5 MeV

— A thermal surface from which around 1033 ergs (1037 MeV) are emitted in all
neutrino species during the explosion

— The neutrino interactions determine the nucleosynthesis conditions in the so-
called neutrino-driven wind

— Detailed information on the composition and other thermodynamic properties
of matter in the neutrinosphere region is important to evaluate role of
neutrino scattering.
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